

BENHA UNIVERSITY FACULTY OF ENGINEERING AT SHOUBRA

ECE-29 | Electronic Engineering

Lecture #5 Basics of Digital Logic Design

Instructor: Dr. Ahmad El-Banna

2015

SPRINC

)anna

Ahmad [

 \bigcirc

3

Digital Electronics

- Digital electronic circuits, are electronics that represent signals by discrete bands of analog levels, rather than by continuous ranges (as used in analogue electronics).
- In most cases the number of **states** is **two**.
- They are represented by two voltage bands: one near a reference value (typically termed as "ground" or zero volts), and the other a value near the supply voltage.
- These correspond to the "false" ("0") and "true" ("1") values of the Boolean domain, respectively, yielding binary code.

Boolean Algebra	Boolean Logic	Voltage State
Logic "1"	True (T)	High (H)
Logic "O"	False (F)	Low (L)

Digital Electronics..

Advantages:

- Digital techniques are useful because it is <u>easier</u> to get an electronic device to switch into one of a number of known states than to accurately reproduce a continuous range of values.
- Signals represented digitally can be <u>transmitted without degradation</u> <u>due to noise</u>.
- Computer-controlled digital systems can be <u>controlled by software</u>, allowing new functions to be added without changing hardware.

Disadvantage:

 In some cases, digital circuits <u>use more energy</u> than analog circuits to accomplish the same tasks, thus <u>producing more heat</u> which <u>increases the complexity</u> of the circuits such as the inclusion of heat sinks.

Digital Electronics...

- A digital circuit is often constructed from small electronic circuits called logic gates that can be used to create combinational logic.
- Each logic gate represents a **function of boolean logic**.
- A logic gate is an arrangement of electrically controlled switches, better known as **transistors**.
- Logic gates often use the fewest number of transistors in order to reduce their size, power consumption and cost, and increase their reliability.
- Integrated circuits are the least expensive way to make logic gates in large volumes. Integrated circuits are usually designed by engineers using electronic design automation software

Classification of Integrated Circuits

- <u>Small Scale Integration or (SSI)</u> Contain up to 10 transistors or a few gates within a single package such as AND, OR, NOT gates.
- <u>Medium Scale Integration or (MSI)</u> between 10 and 100 transistors or tens of gates within a single package and perform digital operations such as adders, decoders, counters, flip-flops and multiplexers.
- <u>Large Scale Integration or (LSI)</u> between 100 and 1,000 transistors or hundreds of gates and perform specific digital operations such as I/O chips, memory, arithmetic and logic units.
- <u>Very-Large Scale Integration or (VLSI)</u> between 1,000 and 10,000 transistors or thousands of gates and perform computational operations such as processors, large memory arrays and programmable logic devices.
- <u>Super-Large Scale Integration or (SLSI)</u> between 10,000 and 100,000 transistors within a single package and perform computational operations such as microprocessor chips, micro-controllers, basic PICs and calculators.
- <u>Ultra-Large Scale Integration or (ULSI)</u> more than 1 million transistors the big boys that are used in computers CPUs, GPUs, video processors, micro-controllers, FPGAs and complex PICs.

LOGIC GATES

8

Ahmad \bigcirc . Spring 2015 Elec. Eng., Lec#5 ,

)anna

BASIC LOGIC BLOCK (GATE)

- Types of Basic Logic Blocks
 - Combinational Logic Block

Logic Blocks whose output logic value depends only on the input logic values

- Sequential Logic Block

Logic Blocks whose output logic value depends on the input values and the state (stored information) of the blocks

- Functions of Gates can be described by
 - Truth Table
 - Boolean Function
 - Karnaugh Map

NOT Gate -- Inverter

If A is NOT true, then Q is true

• The Logic NOT Gate Truth Table

Symbol	Truth Table		
	А	Q	
	0	1	
Inverter or NOT Gate	1	0	
Boolean Expression Q = not A or \overline{A}	Read as invers	se of A gives Q	

NOT Gate – Inverter.

• Transistor NOT Gate

• 7404 NOT Gate or Inverter

If either A or B is true, then Q is true

• 2-input Transistor OR Gate

• The 2-input Logic OR Gate

OR Gate..

• The 3-input Logic OR Gate

Symbol	Symbol Truth Table			
	С	В	А	Q
	0	0	0	0
	0	0	1	1
A	0	1	0	1
	0	1	1	1
3-input OR Gate	1	0	0	1
	1	0	1	1
	1	1	0	1
	1	1	1	1
Boolean Expression Q = A+B+C	Read as A OR B OR C gives Q			

• Multi-input OR Gate

6-input "OR" Function

)anna © Ahmad] Elec. Eng., Lec#5, Spring 2015

AND Gate

If both A and B are true, then Q is true

Symbol Truth Table		Table		
	С	В	А	Q
	0	0	0	0
	0	0	1	0
	0	1	0	0
	0	1	1	0
3-input AND Gate	1	0	0	0
	1	0	1	0
	1	1	0	0
	1	1	1	1
Boolean Expression Q = A.B.C	Read as	s A AND	B AND C	gives Q

AND Gate..

• 2-input Transistor AND Gate

• Multi-input AND Gate

6-input "AND" Function

OR/AND Gates using diodes

16

74xx IC

• <u>7432 Quad 2-input Logic OR Gate</u>

• 7408 Quad 2-input AND Gate

NOR Gate

2-input "OR" gate plus a "NOT" gate

7402 Quad 2-input NOR Gate

© Ahmad El-Banna

Elec. Eng., Lec#5, Spring 2015

NAND Gate

2-input "AND" gate plus a "NOT" gate

19

NOR & NAND Universal Gate

© Ahmad El-Banna

<u>Elec. Eng.</u>, Lec#5 , Spring 2015

20

• Any gate can be constructed using them.

XOR and XNOR Gates

Symbol	1	Truth Table	e
	В	А	Q
AO	0	0	0
B O O Q	0	1	1
2-input Ex-OR Gate	1	0	1
	1	1	0
Boolean Expression Q = A \oplus B	A OR B bu	t NOT BOI	TH gives Q

21

Truth Table Summary

Inp	uts	Truth Table Outputs For Each Gate					
А	В	AND	NAND	OR	NOR	EX-OR	EX-NOR
0	0	0	1	0	1	0	1
0	1	0	1	1	0	1	0
1	0	0	1	1	0	1	0
1	1	1	0	1	0	0	1

Truth Table Output for Single-input Gates					
А	NOT	Buffer			
0	1	0			
1	0	1			

EXAMPLES OF LOGIC CIRCUITS

anna

Ahmad

 \bigcirc

Spring 2015

Lec#5

<u>Elec. Eng.,</u>

Example of a Logic Function

3-input majority function

Logical expression form
F = A B + B C + A C

anna

© Ahmad

LO

Spring 201

Jec#5

Elec. Eng.,

Multiplexers

- An Example of Combinational Circuit
- Output depends only on the current inputs
- 4-data input MUX

- Multiplexer
 - 2ⁿ data inputs
 - n selection inputs
 - a single output
- Selection input determines the input that should be connected to the output

\mathbf{S}_1	S_0	0
0	0	I ₀
0	1	I_1
1	0	I_2
1	1	I_3

Janna

Ahmad

 \bigcirc

S

Spring 201

Lec#5

<u>Elec. Eng.</u>,

SR Latch

- A Sequential example
 - Output depends on current as well as past inputs
- Can remember a bit
- Level-sensitive (not edge-sensitive)

A NOR gate implementation of SR latch

Janna

- For more details, refer to:
 - Digital Logic Tutorial, found online at

http://www.electronics-tutorials.ws/logic/logic_1.html

- Other Digital Logic online Tutorials & wiki.
- Reference books:
 - M. Mano, **Digital-Design**, 4th ed.
 - Fundamentals of Computer Organization and Design.
- The lecture is available online at:
 - <u>http://bu.edu.eg/staff/ahmad.elbanna-courses/12136</u>
- For inquires, send to:
 - <u>ahmad.elbanna@feng.bu.edu.eg</u>

